
Peer-to-peer Technologies Applied to Data
Warehouses

Simone Cirani, Lorenzo Melegari, and Luca Veltri
Department of Information Engineering - University of Parma (Italy)

Email: simone.cirani@tlc.unipr.it, lorenzo.melegari@gmail.com, luca.veltri@unipr.it

Abstract—Data mining and user data collection applications,
like Facebook and Yahoo, make dealing with huge amounts of
data more and more frequent. A solution to cope with this
problem is to spread data over multiple network-connected
physical devices. Having more devices, though, means increasing
system complexity and introducing additional possible points of
failure. Moreover, despite the capacity of hard drives as massive
storage systems has increased extremely during years, the speed
at which data can be accessed has not. In order to address
this problem, over the years, distributed file systems, such as
NFS and HDFS, have been designed and deployed. Such systems
provide access to files stored on multiple hosts connected through
a computer network in a transparent way to users. The peer-to-
peer network paradigm has been introduced to overcome some
limitations of the client-server architecture by adding features,
such as scalability, fault-tolerance, and self-organization. In this
work, we present a solution that integrates peer-to-peer network
support to HDFS in order to realize a flexible, low-cost and,
dynamic distributed file system.

I. INTRODUCTION

When the amount of data to handle exceeds the physical
capacity of a single machine, alternative solutions must be
considered, such as splitting data on multiple machines (clus-
ters). The most natural mechanism to share data among hosts
is to use a computer network, e.g. a LAN or a larger IP
network. In order to address this need, distributed file systems
have been introduced. Distributed file systems are actual file
systems that encapsulate all the functionalities related to data
distribution over the network. The complexity of such systems
is intrinsically higher compared to common file systems, where
data are stored on a single host. Particularly, great attention
must be paid on system reliability since multiplying the
number of hosts introduces many points of failure. Therefore,
issues like network availability, host failures, and the speed of
data access, must be taken care of.

World-famous Facebook and Yahoo have to deal with such
problems everyday. Facebook has 2 major clusters comprising
a 1100-machine cluster and a 300-machine cluster, each one
with 8 cores and 12 TBytes of storage. Yahoo has more than
25000 machines dedicated to distributed file system. Such
examples are overkill for a distributed file system application,
but many others scenarios face the same issues. It is therefore
a concrete problem that needs to be approached, also by not
so high budget projects.

Some well-known current implementations of distributed
file systems are Network File System (NFS) [1], Hadoop
Distributed File System (HDFS) [2], Amazon Simple Storage

Service (Amazon S3) [3], and Google File System (GFS)
[4]. One of the main goals of a NFS is data availability,
that can be pursued by means of robust systems like RAID,
which are usually available on dedicated (high-end) servers.
Since the cost of a single high-end server tops that of many
low-cost computers, current implementations of distributed
file systems often make use of and scale with commercial-
off-the-shell (COTS) computers. Since failure rate of COTS
components is higher than that of high-end ones, these systems
must explicitly implement efficient and reliable mechanisms
for integrity check, redundancy, and transactionality. However,
due to the intrinsic static configuration of these systems, they
require proper setup and ad-hoc configuration in order to work.

On the other hand, a peer-to-peer (P2P) computer network
relies primarily on the computing power and bandwidth of the
participants in the network rather than concentrating it in a
relatively low number of servers. P2P networks are typically
used for connecting nodes via largely ad hoc connections.
An important goal in P2P networks is that all clients (peers)
provide resources, including bandwidth, storage space, and
computing power for network and service maintenance. Thus,
as new nodes arrive, the resource demand increases together
with the total capacity of the system. This is not true in
client-server architectures with a fixed set of servers, in which
adding more clients could mean slower data transfer for all
users. Nodes that belong to P2P networks have heterogeneous
resources, and their behavior is typically unpredictable: nodes
may join and leave (churn) the network at any time, either
gracefully or silently, and at an unknown rate. P2P networks
are designed to handle these conditions of extreme dynamicity.

P2P networks are built by establishing logical links among
a number of nodes that belong to some existing network, such
as the Internet, thus forming a so-called overlay network (or
simply overlay). The rules that define how these logical links
are built and how messages are routed in the overlay network
determine the kind of P2P network. In the case no strict
rule is defined for link establishment, we have unstructured
P2P networks, which typically rely on flooding as routing
strategy. Structured P2P networks, on the other hand, define
strict rules for link establishment and message routing. Typical
examples of structured P2P networks are Distributed Hash
Tables (DHTs), which arrange nodes in the overlay according
to a specific topology (i.e. a ring in Chord, leaves of a binary
tree in Kademlia), in order to achieve some features such as
logarithmic lookup procedures, with little (logarithmic) per-



node state information. DHTs provide an information storage
and retrieval service among a number of collaborating nodes,
based on a key/value mapping, similar to an hash table. DHTs
provide typical P2P network features, such as scalability, fault-
tolerance, and self-organization.

In this paper, we propose a new solution for HDFS based
on a P2P approach. Our goal is to exploit the benefits of
P2P networks in terms of dynamicity to typically static HDFS
configurations. Such design will make it possible to add or
remove nodes to HDFS as needed, in order to use exactly as
many nodes as needed, with no worries to under- or over-
estimate the number of nodes required to perform jobs.

This paper is organized as follows: in section II we will
describe the HDFS architecture, in section III we will explain
how to integrate P2P support in HDFS, with particular refer-
ence to our Distributed Location Service framework as basic
P2P enabling technology. In section IV we will discuss our
implementation and in section V we will envisage future works
to further improve our design. Finally, in section VI we will
briefly discuss about other proposals for applying peer-to-peer
technologies to distributed work, and in section VII we will
draw our conclusions.

II. SCENARIO AND HDFS ARCHITECTURE

As common file systems, HDFS uses the concept of blocks
of data. The block size is the minimum amount of data that
the system can read and/or write. Stored data are broken into
chunks according to the block size, which are then stored as
independent units. Splitting data into blocks leads to several
benefits: it simplifies the storage management as every size
computation is related to multiples of blocks. Blocks are also
used as base units for data replication.

In a HDFS cluster, blocks are persistently stored into one or
more workers, each one called datanode. Datanodes are pure
“dummy” workers, as their job is to read and write data, and
periodically send reports of which data they contain.

The file system manager is another node, called namenode.
The namenode manages the filesystem namespace, maintains
its hierarchical tree and the metadata for files and directories
in the tree. This information is stored persistently on the
namenode’s local disk. The namenode also keeps a registry
of all the blocks of a given file and on which datanodes
these blocks are located. The structure of the entire system
is highly dependent on the namenode. Without the namenode,
the entire file system would be useless since there is no way to
reconstruct a file from the blocks stored on the datanodes. For
this reason, it is important to make the namenode resilient
to failure. This can be achieved by making regular back-
ups of the persistent state of the file system metadata and
writing them to multiple storage devices. This back-up jobs
can be done continuously by a special node called secondary
namenode, which has to be dedicated to these tasks only as
continuous registry merging could be computing intensive.

HDFS also provides replication methods to avoid data loss.
Each time a new block is written, the namenode should
also locate where replicas of the block should be placed. In

common scenarios, every block is replicated three times. A
CRC function applied on every 512 bytes of each block is
also normally used to achieve data integrity.

A HDFS cluster is typically made by several (even hun-
dreds) datanodes (data center), organized in different racks,
which are redundant in nature, and one namenode, that is
indeed extremely susceptible to hardware failure.

The main operations that an application can do on a HDFS
file system data are writing, reading, appending, and deleting.
HDFS takes care of all the issues related to concurrent access
by external clients. During the reading phase, the client first
connects to a private instance of a HDFS proxy, which
provides access to the namenode interface. The request is
then forwarded to the namenode through a RPC call. The
namenode then scans its file/block register to investigate how
the requested file was split and where each block was stored.
For each block, the closest datanode references, according to
proximity metric of the topology of the cluster’s network,
are retrieved and reported to the proxy. Then the proxy
creates input streams from the client to the datanodes. Input
streams make it possible to read data that are stored on
different datanodes in a transparent way, thus hiding the
actual location of blocks, as if reading data from a single,
continuous flow. HDFS manages IO failures by redirecting to
available datanodes in case of unreadable blocks. HDFS files
cannot be written at arbitrary positions. Writing operations
on existing files are only allowed for appending or deleting.
Thus, writing operations themselves are done for adding new
files only. During the writing phase, the client contacts a
private instance of a HDFS proxy. The proxy constructs a
create request that is forwarded to the namenode, which then
checks if the file already exists. If it does, the request is
denied. If the file doesn’t exist, the namenode reports the
parameters required to construct an output stream to the proxy.
The output stream contains two different queues: the data
queue and the ack queue. The data queue contains blocks of
data ready to be forwarded to the datanodes. For each block,
the stream contacts the namenode to get a list of datanodes
the block should be stored on. After such information is
received, the block is forwarded to the first datanode of the list
(datanode pipeline). As a block is forwarded to a datanode, it
is also temporarily stored in the ack queue. When a datanode
pipeline is done writing a block, it commits to the ack queue,
which will then remove it. If even a single datanode in the
pipeline fails to write, the ack queue removes the unsuccessful
datanode from the pipeline and puts the data back in queue
to successively write on the datanodes that were skipped after
failure.

In order to ensure that HDFS works correctly, as sketched
above, all the machines in the cluster should be pre-configured
accordingly. Every datanode must know who the namenode
is and where it is located in order to run successfully. The
namenode must also know every datanode location so to reach
it and make it active during a working session. The HDFS
working environment is extremely static. Therefore, if more
machines are needed to perform a job (for example because



their number has been underestimated), new machines need to
be added to the cluster; on the other hand, if less machines
are needed (because they have been overestimated), some
machines would not be used and would not be operant; in both
cases the entire system should be opportunely rebalanced and
configured.

III. PEER-TO-PEER AND HDFS INTEGRATION

The HDFS distributed filesystem is focused on scaling well
on commodity machines, providing good data transfer per-
formances with high reliability. HDFS provides methods for
balancing the cluster load and adding/removing datanodes to
and from the system. Each machine should be pre-configured
to act as a datanode, which involves knowing exactly where the
namenode is and how to reach it. Also, during system startup,
the namenode should know an initial list of datanodes to work
properly. These constrains can limit system’s functionality in
those scenarios which do not guarantee complete staticity,
as every datanode should be configured for accessing a well
known namenode. This means that if the namenode changes
because of a failure or if there is more than one namenode,
each one for a specific, time-limited, working session, every
datanode must be reconfigured. In such scenario, we propose
to use a P2P layer underlying the HDFS system to provide a
hot-plug framework for datanodes to dynamically connect and
disconnect from an HDFS working session without compro-
mising overall system’s performance.

Our design relies strongly on a component, called Dis-
tributed Location Service (DLS) [5], which provides a P2P
service of storage and retrieval of location information. The
DLS is a DHT-based framework which we have conceived
in order to enable applications to establish direct connections
among the endpoints of the communication in a P2P fashion.
The DLS stores mappings of key/value pairs, which associate
the URI of some resource to the information needed to access
it, such as its URL, its expiration time (i.e. the time after which
the resource should not be considered), and an access priority
value. The mapping is 1:N, rather than 1:1, due to redundancy
obtained by registering more resource values for the same
resource name. The DLS framework makes no assumption on
the DHT algorithm and communication protocol that is going
to be used, thus allowing for different implementation options
as needed. The interface for accessing the DLS is transparent
to applications, as it relies on two basic RPCs: put(key,value),
used to store a key/value mapping in the DLS, and get(key),
used to retrieve the set of values associated with a key in the
DLS.

Our goals in the design of the architecture are:

• full exploitation of existing resources: the system should
use all the available resources in terms of storage ca-
pacity, computational power, and bandwidth; the system
should work with heterogeneous machines, thus dropping
the constraint of using only high-end hardware;

• load distribution: the system should autonomously bal-
ance the associated resources;

• upgradeability: the system should support overall capac-
ity changes at runtime;

• data persistence: data loss is not acceptable, thus the
system should guarantee that stored data are always
available;

• data availability: the system should ensure data integrity
at all times;

• data access: stored data should be seekable and accessed
in reasonable times.

Another not technical feature that we aim to provide is
the possibility to cut costs for the infrastructure, both for
buying machines and maintaining them. Assuming that the
system works well with non high-end machines therefore
has strong economic implications, thus making these solution
affordable and particularly interesting even for low-budget
projects. Nowadays, using COTS hardware implies that hard-
ware replacement is often preferable and more practical than
professional assistance, both for hardware problems solutions
and software configurations.

In the proposed architecture, the DLS is used as an utility
layer to connect cluster machines one to each other and
exchange information among them. To do so, a static con-
figuration is no longer needed. The namenode connects to
the overlay, acting as a DLS peer and publishing information.
When the namenode joins the overlay it publishes its status
and service addresses in the DLS through successive put
RPCs, thus making them accessible to other DLS peers. These
information are then maintained collectively by all the peers
participating in the DLS, but only the namenode can and
must keep them fresh. All the information a node needs to
become an active HDFS datanode are therefore available in
the DLS and can be retrieved through get RPCs. As a new
datanode enters the system, it can read the needed namenode
information from the DLS layer, discover the namenode’s
location and contact it for authentication. As the namonode
accepts the new datanode, the datanode becomes part of the
HDFS cluster and all the following operations are done using
the HDFS RPC protocol, so that the DLS is not involved
anymore and HDFS performances are preserved. Figure 1
shows how namenodes and datanodes interact with the P2P
substrate.

The underlying DLS layer has been designed to also in-
troduce benefits during namenode temporary failures. The
resource access information stored in the DLS include, besides
the URL needed to access the resource, also an expiration time,
after which the resource should not be considered fresh, and
it is actually removed from the DLS. This typically happens
when a resource is not renewed after a failure. In this case,
the information that needs to be renewed is the namenode
access information, which, if absent, denotes the failure of the
namenode. During namenode downtime, its access information
are therefore no more available on the DLS. In the proposed
architecture, while the namenode is unavailable, datanodes
begin to poll on the DLS, waiting for the namenode or its
replacement to become active. As soon as a namenode joins
the DLS, it publishes its access information, so that datanodes



Fig. 1. DLS and HDFS integration

can contact it to register and the system returns to a fully
functional status. Therefore, the system itself is responsible
for its functional consistency, thus eliminating the drawbacks
of assistance in the case of failures.

In the proposed work, we made the assumption that HDFS
node and DLS peer both reside (and cooperate) on the same
machine. However these roles are only logical and the same
system behavior can be achieved when the HDFS node and
peer do not coexist on the same machine, by using so-called
adapter nodes to interact with the DLS overlay. Adapter nodes
are DLS edge nodes capable of interfacing with applications
that do not belong to the DLS. Such nodes parse and forward
location information requests into the DLS, thus acting as a
proxy/gateway to the DLS. In this scenario, adapter nodes
are used by HDFS nodes to get location information without
participating in the DLS life cycle.

IV. IMPLEMENTATION

Development of the proposed work has been done, using
the HDFS implementation from the Apache Hadoop Project1.

In our implementation of a DLS, we have used Kademlia
[6] as a DHT algorithm. This choice was taken as Kademlia
outperforms other DHT algorithms in terms of robustness (i.e.,
churn handling, key redundancy). We modified the original
Kademlia algorithm to better react to failures, by implementing
a failure notification procedure that propagates in the DHT,
thus allowing to remove failed nodes from a node’s routing
table in order to increase efficiency in routing paths. dSIP
[7] has been used as a DHT management and maintenance
communication protocol. dSIP has first been adapted [8] to
fit the Kademlia algorithm specification, and then properly
modified to handle our failure notification procedure.

On the DLS framework, an Hadoop Generic Peer was
developed as a generic connection layer (both synchronous and

1http://hadoop.apache.org/hdfs, http://www.apache.org

asynchronous) between a DLS Peer and the HDFS/Hadoop
architecture. On top of this generic connector, the choice
has been to encapsulate the DLS functionality needed by the
HDFS node in two different wrapper structures, a DataN-
ode Service Wrapper and a NameNode Service Wrapper.
These wrapper structures offer bridge functionality the generic
implementation of the Hadoop Generic Peer. Usage of the
Generic Peer structures makes the system independent from
the underlying DHT algorithm used. System startup proceeds,
as in the traditional HDFS implementation, first namenode
then datanodes. However, in the proposed work, namenode
initially have no information about which datanodes belong
to the system. During namenode boot, the associated Peer
publishes on the DLS the namenode IP address and service
port, using a well known resource key. On datanode boot, no
information about the namenode were previously provided.
The datanode Peer does a namenode discovery on the DLS. If
a namenode is available, then the datanode contacts it through
the HDFS RPC protocol. When a datanode wants to leave the
system, it first sends a HDFS leave request to the namenode,
than it executes a leave procedure on the DLS. In case of a
temporary namenode failure, the datanodes remain connected
one to each other through the DLS layer. The namenode could
leave the system in two ways:

• Graceful leave : the namenode removes service informa-
tion from the DLS layer, waits for all datanode discon-
nection and then leaves. Datanodes will remain polling
the DLS at a given rate, waiting for a new namenode to
arrive.

• Failure : the namenode becomes suddenly unavailable, all
the service information on the DLS are removed after the
renew timeout has expired. While it has not, the system
status is unpredictable, as all the calls to the namenode
from datanodes will fail. After namenode information
are removed, datanodes polls the DLS waiting for a
namenode.

V. FUTURE WORK

Future research will focus on using other DHT algorithms
for the DLS than Kademlia. Indeed, the relatively small
number of nodes in a typical scenario makes Kademlia an
overkill in terms of DHT size and churn rate. Other DHT
algorithms, such as one-hop DHTs [9], appear to fit better into
the architecture for our reference scenario. One-hop DHTs pro-
vide O(1) lookup procedures. This performance boost can be
achieved only with O(N) state information, which make these
DHTs suitable only for relatively low numbers of participating
nodes. However, this is actually the kind of applications where
such DHTs might offer their full benefits.

Another direction of our research will be the full distribution
of the functionalities of the namenode. This feature would
allow the deployment of a HDFS architecture in a purely
P2P fashion. All nodes would collaborate to implement the
management of the file system collectively, thus making the
entire architecture more robust, since the namenode function-
alities would be divided among all the peers. The advantages



would therefore be the elimination of single point of failure
and increment the performance for the system since the
intermediation of the namenode bottleneck would be no longer
required. This task is very challenging since it introduces
several problems like:

• handling concurrent read/write data accesses;
• consistency of file system indexes;
• synchronization of data duplicates;
• consistency check.
Replacing the namenode with a distributed system comes at

the price of overloading all datanodes of all the management of
all the information related file system and the synchronization
with the overlay participants. This approach increases the
overall complexity and the must be properly designed to ensure
that full functionalities are available at any time, even when
nodes fail.

VI. RELATED WORK

In literature, few works have addressed the issue of applying
peer-to-peer networks to manage large amounts of distributed
data. BlobSeer authors in [10] and [11] have proposed to
handle storage and access of binary long objects (blobs), such
as reading, writing, and appending, by splitting blobs into
chunks and using metadata information for concurrent access
management. Metadata are stored in a tree built on top of
a Distributed Hash Table. In [12], the authors show how to
build a distributed file system by directly storing files in a
DHT. Such approach, in our vision, is not promising, as it
does not address the issue of concurrency and data integrity
check, which should be provided instead for data-intensive
applications. Moreover, DHT reorganization, as a consequence
of churn, implies that huge amounts of data be transferred from
node to node. Because of this, we envisaged that a reference-
based distributed system should behave better in terms of
performance and P2P overlay maintenance.

VII. CONCLUSIONS

In this work we have described a possible approach to inte-
grate peer-to-peer support into a HDFS architecture by using
a Distributed Location Service as a means to connect cluster
machines and allow communication among them in dynamic
scenarios, thus removing the need for ad-hoc configuration of
the HDFS system. The peer-to-peer layer underlying the HDFS
system is meant to provide a hot-plug framework for datanodes
to dynamically connect and disconnect from an HDFS working
session without compromising overall system’s performance.

After a description of the HDFS architecture, based on the
concept of blocks of data, and the roles of datanodes and
namenodes, we have outlined how peer-to-peer support could
be integrated. Our solution is based on a Distributed Location
Service, which is a peer-to-peer framework that allows the
implementation of a service for storing and retrieving infor-
mation about the location of resources. The DLS is based on
DHT, in order to ensure the features of structured peer-to-peer
networks for overall system performance.

Our proposed architecture has been realized using the
Apache Hadoop HDFS implementation and a DLS based on
a Kademlia DHT algorithm, modified on purpose in order to
efficiently handle node failure events in the network.

Finally we have sketched future directions for our research,
such as the use of one-hop DHTs that appear to fit better for
relatively small peer-to-peer networks, and the possibility to
fully distribute the functionalities of HDFS namenodes on the
peer-to-peer layer, in order to make the HDFS architecture
more robust.

REFERENCES

[1] S. Shepler, B. Callaghan, D. Robinson, R. Thurlow, C. Beame, M.
Eisler, and D. Noveck. Network File System (NFS) Version 4 Protocol.
RFC 3530, IETF., Apr. 2003.

[2] Apache Hadoop Project. http://hadoop.apache.org.
[3] Amazon Simple Storage Service (S3). http://aws.amazon.com/s3.
[4] S. Ghemawat, H. Gobioff, and S. Leung. The Google File System. In

Proceedings of the 19th ACM Symposium on Operating System Principles,
Lake George - NY, USA, Oct. 2003.

[5] S. Cirani and L. Veltri. Implementation of a framework for a DHT-based
Distributed Location Service. In Proceedings of the 16th International
Conference on Software, Telecommunications and Computer Networks
(SoftCOM 2008), Split - Dubrovnik, Croatia, Sep.. 2008.

[6] P. Maymounkov and D. Mazières. Kademlia: A Peer-to-Peer Information
System Based on the XOR metric. In 1st International Workshop on
Peer-to-peer Systems, 2002.

[7] D. Bryan. dSIP: A P2P Approach to SIP Registration and Resource
Location. Internet-Draft draft-bryan-p2psip-dsip-00, IETF, Feb. 2007.

[8] S. Cirani and L. Veltri. A Kademlia-based DHT for Resource Lookup
in P2PSIP. Internet-Draft ciranip2psip-dsip-dhtkademlia-00, IETF, Oct.
2007.

[9] L. R. Monnerat, and C. L. Amorim. D1HT: A Distributed One Hop
Hash Table. In Proceedings of the 20th IEEE Parallel and Distributed
Processing Symposium (IPDPS ’06), Rhodes Island, Greece, Apr. 2006.

[10] L. Nicolae, G. Antoniu, and L. Bougé. BlobSeer: How To Enable
Efficient Versioning for Large Object Storage Under Heavy Access
Concurrency. In Proceedings of the 2009 EDBT/ICDT Workshops, pages
18-25, Saint-Petersburg, Russia, Mar. 2009.

[11] B. Nicolae, D. Moise, G. Antoniu, L. Bougé, and M. Dorier.
BlobSeer: Bringing High Throughput Under Heavy Concurrency to
Hadoop Map-Reduce Applications. In Proceedings of the 24th IEEE
Parallel and Distributed Processing Symposium (IPDPS ’10), Atlanta,
USA, Apr. 2010.

[12] J. Pang, P. B. Gibbons, M. Kaminsky, S. Seshan, and H. Yu.
Defragmeting DHT-based Distributed File System. In Proceedings of In-
ternational Conference on Distributed Computing Systems (ICDCS’2007),
Toronto - Ontario, Canada, Jun. 2007.


